Improving go-git performance

Javi Fontan

source{d}

source{d}

= \\hat's go-git

== \Vhat's go-git source{d}

A highly extensible Git implementation in pure Go

® 100% Go library to interact with git repositories, like git command but in a library

® Supports most of git functionality
® Uses abstracted filesystem, possibility to implement new storage systems, for example S3

// Clone the given repository to the given directory

Info("git clone https://github.com/src-d/go-git")

err := git.PlainClone("/tmp/foo", false, &git.CloneOptions{
URL: "https://github.com/src-d/go-git",

Progress: os.Stdout,

)

== \Vhat's go-git source{d}

Why other implementations are so fast

® They have lots of people supporting those implementations
® Use lots (I mean LOTS) of tricks
® Some cases have specific code paths

® They use more than one thread

Now that go-git version 4 is almost feature complete compared with other implementations. We are working on make it

faster. Most operations on small and medium sizes spend less than twice the time git command takes.

= \\hat's go-git

How git stores data

Packfiles hold objects in a very efficient manner.

Each object has a header and its compressed data.

An object can be a delta, in this case it has its parents
type, points to the parent offset in the packfile and the
data it holds is a delta from the parent.

Compressed size or object hash is not written in the
packfile. This is generated uncompressing, undeltifying
and hashing each object.

There’s a companion index to the packfile that relates
object hashes and packfile offset but it is not sent when
cloning. It has to be generated.

A CRC is calculated for each object’s data in the packfile
to check that it's correct.

source{d}

Header, type Blob

Object data

Header, type Delta
Offset of parent

Object delta to parent

Header, type Delta
Offset of parent

Object delta to parent

= \\hat's go-git source{d}

Recent performance improvements

e Modify an LRU cache to be able to evict more than one object in case there’s no space in it. This
change decreased disk access and decompression quite heavily. Index creation speed was
increased 2x.

e Freed memory more aggressively when packing objects. This change decreased memory
consumption between 3 and 5 times less. It also made some speed improvements as also
decreased GC pressure.

e Modified delta packing algorithm to make better use of delta reuse. It doubled the speed of this
process and decreased packfile size.

source{d}

= |Mmproving index generation speed

= (Generating the index source{d}

What's a teeReader

It's a reader wrapper that writes to a CRC hasher all the bytes read.

= (Generating the index source{d}

Generating CRC - Original Code

func (r *teeReader) ReadByte() (b byte, err error) {
b, err = r.reader.ReadByte()

if err == nil {
slice := []byte{b}
_, err := r.w.Write(slice)
if err !'= nil {
return 0, err
}
}
return

= (Generating the index source{d}

Generating CRC - Original Profile

70ms
170ms

150ms

90ms
40ms

20ms

70ms
550ms

870ms

1.01s
40ms

20ms

416 :func (r *teeReader) ReadByte() (b byte, err error) {

417 .
418:
419:
420
421 :
422
423
424
425
426 :
427 :}

b, err = r.reader.ReadByte()

if err == nil {
slice := []byte{b}
_, err := r.w.Write(slice)
if err !'= nil {
return 0, err
}
}
return

= (Generating the index source{d}

Generating CRC - Precreate Slice Code

func (r *teeReader) ReadByte() (b byte, err error) {
if r.byteBuf == nil {
r.byteBuf = make([]byte, 1)

}
b, err = r.reader.ReadByte()
if err == nil {

r.byteBuf[@] = b
err := r.w.Write(r.byteBuf)

—)

if err !'= nil {
return 0, err
}
}
return

= (Generating the index source{d}

Generating CRC - Precreate Slice Profile

40ms 40ms 418:func (r *teeReader) ReadByte() (b byte, err error) {
40ms 40ms 419: if r.byteBuf == nil {
: : 420 : r.byteBuf = make([]byte, 1)
. . 421: }
60ms 470ms 422: b, err = r.reader.ReadByte()
. . 423: if err == nil {
20ms 20ms 424: r.byteBuf[0] = b
70ms 880ms 425: _, err := r.w.Write(r.byteBuf)
20ms 20ms 426 : if err !'= nil {
427 . return 0, err
428: }
429: }
. . 430:
40ms 40ms 431: return
432 :}

= (Generating the index source{d}

Generating CRC - Library Code

func slicingUpdate(crc uint32, tab *slicing8Table, p []byte) uint32 {
if len(p) >= slicing8Cutoff {
crc = “crc
for len(p) > 8 {
// here calculates CRC
[...]
p = p[8:]
}
crc = “crc
}
if len(p) == 0 {
return crc
}

return simpleUpdate(crc, &tab[@], p)
}

= (Generating the index source{d}

Generating CRC - Add a Buffer to CRC Writer

func newTeeReader(r reader, h hash.Hash32) *teeReader {
return &teeReader{

reader: r,
W h,
bufWriter: bufio.NewWriter(h),

}

}

func (r *teeReader) ReadByte() (b byte, err error) {
b, err = r.reader.ReadByte()

if err == nil {
return b, r.bufWriter.WriteByte(b)
}
return
}

= (Generating the index source{d}

Generating CRC - Add a Buffer to CRC Writer

60ms
130ms

80ms

30ms

60ms
540ms

270ms

30ms

437

444

:func (r *teeReader) ReadByte() (b byte, err error) {
438:
439:
440:
441 :
442 :
443 :

S}

b, err = r.reader.ReadByte()

if err == nil {

return b, r.bufWriter.WriteByte(b)
}
return

m» Preallocate Slices source{d}

Slice grow is expensive

Allocates double the capacity of the old slice

Copies the old slice data to the new one

Adds pressure to the GC as it has to free the old slice data

This is especially problematic for a big amount of slices or big ones

Of you know the size or can estimate beforehand use it to set the capacity

m» Preallocate Slices source{d}

Code example

targetSz, delta := decodeLEB128(delta)
var dest []byte

for {
[...]

deé£ = append(dest, src[o:o+sz]...)

targetSz, delta := decodelLEB128(delta)
dest := make([]byte, 0, targetSz)

for {
[...]

deéf = append(dest, srcl[o:o+sz]...)

m» Preallocate Slices source{d}

= Performance first version (0.96 s)

gopkg.in/src-d/go-git.v4/plumbing/format/packfile.applyPatchBase
gopkg.in/src-d/go-git.v4/plumbing/format/packfile.(*PackParser).resolveObject
gopkg.in/src-d/go-git.v4/plumbing/format/packfile.(*PackParser).resolveObjects
gopkg.in/src-d/go-git.v4/plumbing/format/packfile.(*PackParser).resolveTree
gopkg.in/src-d/go-git.v4/plumbing/format/packfile.(*PackParser).resolveDeltas
gopkg.in/src-d/go-git.v4/plumbing/format/packfile.(*PackParser).Parse
gopkg.in/src-d/go-git.v4/storage/filesystem/internal/dotgit.(*PackWriter).buildIndex
root

m» Preallocate Slices source{d}

= Performance second version (0.50 s)

gopkg.in/src-d/go-git.v4/plumbing/format/packfile.applyPatchBase
gopkg.in/src-d/go-git.v4/plumbing/format/packfile.(*PackParser).resolveObject
gopkg.in/src-d/go-git.v4/plumbing/format/packfile.(*PackParser).resolveObjects
gopkg.in/src-d/go-git.v4/plumbing/format/packfile.(*PackParser).resolveTree
gopkg.in/src-d/go-git.v4/plumbing/format/packfile.(*PackParser).resolveDeltas
gopkg.in/src-d/go-git.v4/plumbing/format/packfile.(*PackParser).Parse
gopkg.in/src-d/go-git.v4/storage/filesystem/internal/dotgit.(*PackWriter).buildIndex
root

source{d}

= |nspecting Syscalls

= |nspecting Syscalls source{d}

Understand what is doing with the system

Your programs interact with the rest of the system

Sometimes the bottleneck is not the software but the systems it’s trying to use
Other times is a bad use of these systems

Calling the system has a price, it needs to switch context to kernel mode and back
strace or dtrace can be useful to show what's it doing

S strace -o strace.log -f my_software

e -0: sends the output to a file
e -f:follow threads

= |nspecting Syscalls source{d}

Example of output

9220 openat(AT_FDCWD,
"test_repo/.git/modules/doc/scipy-sphinx-theme/objects/pack/pack-4a8c3dfb6e1
8cfab78c8602e0d60cb4734486416 .pack”, O_RDONLY|O_CLOEXEC) = 5

9220 1seek(5, ©, SEEK_SET) =0
9220 1seek(5, ©, SEEK_CUR) =0
9220 1seek(5, 2127, SEEK_SET) = 2127
9220 1seek(5, ©, SEEK_CUR) = 2127

9220 read(5,
"\227\32x\234\225P\273N\4!\24\355\347+ng\3413j\200\5\2261\306\250\235&\32\243
\306\376\2\27" ..., 4096) = 4096
9220 1lseek(5, 0, SEEK_CUR)
9220 1lseek(5, @6, SEEK_SET)
9220 close(5)

6223
0

= |nspecting Syscalls source{d}

Find bad uses of SEEK_CUR

S grep -E '(open|read|seek)' strace.log

[...]

11209 1lseek(6, ©, SEEK_CUR) = 224543
11209 lseek(6, ©, SEEK_CUR) = 224543
112089 lseek(6, ©, SEEK_CUR) = 224543
11209 lseek(6, ©, SEEK_CUR) = 224543
11209 1lseek(6, ©, SEEK_CUR) = 224543
11209 lseek(6, ©, SEEK_CUR) = 224543
112089 lseek(6, ©, SEEK_CUR) = 224543
11209 lseek(6, ©, SEEK_CUR) = 224543

11209 read(6, "\327\261\360"..., 4896) = 4096

11209 lseek(6, ©, SEEK_CUR) = 228639
11209 lseek(6, ©, SEEK_CUR) = 228639
11209 lseek(6, @, SEEK_CUR) = 228639
11209 1seek(6, ©, SEEK_CUR) = 228639

= |nspecting Syscalls source{d}

Find seek direction and jump size

S grep SEEK_SET master.strace | grep -v -E '(= 0S|unfinished)' | awk 'BEGIN
{pos=0} {new=$6;print pos-new;pos=new}'

[...]

-19608
19843
-19843
19843
-423
188
-319
-19289
19843
-19843
19843

m» Conclusions source{d}

Biggest improvements are done changing the algorithm

The profiler is your friend, learn to use it

Check if you're doing the same thing multiple times, this happens very often
Try not to do one byte writes, use buffers is you really need to do it
Preallocate slices when possible

Your software does not work alone, check the use of the rest of the system
When in doubt check library implementations

source{d}

m» Thanks!

