
Improving go-git performance
Javi Fontán

What’s go-git

What’s go-git

A highly extensible Git implementation in pure Go

● 100% Go library to interact with git repositories, like git command but in a library
● Supports most of git functionality
● Uses abstracted filesystem, possibility to implement new storage systems, for example S3

// Clone the given repository to the given directory

Info("git clone https://github.com/src-d/go-git")

_, err := git.PlainClone("/tmp/foo", false, &git.CloneOptions{

 URL: "https://github.com/src-d/go-git",

 Progress: os.Stdout,

})

What’s go-git

Why other implementations are so fast

● They have lots of people supporting those implementations

● Use lots (I mean LOTS) of tricks

● Some cases have specific code paths

● They use more than one thread

Now that go-git version 4 is almost feature complete compared with other implementations. We are working on make it

faster. Most operations on small and medium sizes spend less than twice the time git command takes.

What’s go-git

How git stores data

● Packfiles hold objects in a very efficient manner.
● Each object has a header and its compressed data.
● An object can be a delta, in this case it has its parents

type, points to the parent offset in the packfile and the
data it holds is a delta from the parent.

● Compressed size or object hash is not written in the
packfile. This is generated uncompressing, undeltifying
and hashing each object.

● There’s a companion index to the packfile that relates
object hashes and packfile offset but it is not sent when
cloning. It has to be generated.

● A CRC is calculated for each object’s data in the packfile
to check that it’s correct.

Header, type Blob

Object data

Header, type Delta
Offset of parent

Object delta to parent

Header, type Delta
Offset of parent

Object delta to parent

What’s go-git

Recent performance improvements

● Modify an LRU cache to be able to evict more than one object in case there’s no space in it. This
change decreased disk access and decompression quite heavily. Index creation speed was
increased 2x.

● Freed memory more aggressively when packing objects. This change decreased memory
consumption between 3 and 5 times less. It also made some speed improvements as also
decreased GC pressure.

● Modified delta packing algorithm to make better use of delta reuse. It doubled the speed of this
process and decreased packfile size.

Improving index generation speed

Generating the index

What’s a teeReader

It’s a reader wrapper that writes to a CRC hasher all the bytes read.

File CRC

Reader

Generating the index

Generating CRC - Original Code

func (r *teeReader) ReadByte() (b byte, err error) {
 b, err = r.reader.ReadByte()
 if err == nil {
 slice := []byte{b}
 _, err := r.w.Write(slice)
 if err != nil {
 return 0, err
 }
 }

 return
}

Generating the index

Generating CRC - Original Profile

 70ms 70ms 416:func (r *teeReader) ReadByte() (b byte, err error) {
170ms 550ms 417: b, err = r.reader.ReadByte()
 . . 418: if err == nil {
150ms 870ms 419: slice := []byte{b}
 90ms 1.01s 420: _, err := r.w.Write(slice)
 40ms 40ms 421: if err != nil {
 . . 422: return 0, err
 . . 423: }
 . . 424: }
 . . 425:
 20ms 20ms 426: return
 . . 427:}

Generating the index

Generating CRC - Precreate Slice Code

func (r *teeReader) ReadByte() (b byte, err error) {
 if r.byteBuf == nil {
 r.byteBuf = make([]byte, 1)
 }
 b, err = r.reader.ReadByte()
 if err == nil {
 r.byteBuf[0] = b
 _, err := r.w.Write(r.byteBuf)
 if err != nil {
 return 0, err
 }
 }

 return
}

Generating the index

Generating CRC - Precreate Slice Profile

40ms 40ms 418:func (r *teeReader) ReadByte() (b byte, err error) {
40ms 40ms 419: if r.byteBuf == nil {
 . . 420: r.byteBuf = make([]byte, 1)
 . . 421: }
60ms 470ms 422: b, err = r.reader.ReadByte()
 . . 423: if err == nil {
20ms 20ms 424: r.byteBuf[0] = b
70ms 880ms 425: _, err := r.w.Write(r.byteBuf)
20ms 20ms 426: if err != nil {
 . . 427: return 0, err
 . . 428: }
 . . 429: }
 . . 430:
40ms 40ms 431: return
 . . 432:}

Generating the index

Generating CRC - Library Code

func slicingUpdate(crc uint32, tab *slicing8Table, p []byte) uint32 {
if len(p) >= slicing8Cutoff {

crc = ^crc
for len(p) > 8 {

 // here calculates CRC
 [...]

p = p[8:]
}
crc = ^crc

}
if len(p) == 0 {

return crc
}
return simpleUpdate(crc, &tab[0], p)

}

Generating the index

Generating CRC - Add a Buffer to CRC Writer

func newTeeReader(r reader, h hash.Hash32) *teeReader {
 return &teeReader{
 reader: r,
 w: h,
 bufWriter: bufio.NewWriter(h),
 }
}
func (r *teeReader) ReadByte() (b byte, err error) {
 b, err = r.reader.ReadByte()
 if err == nil {
 return b, r.bufWriter.WriteByte(b)
 }

 return
}

Generating the index

Generating CRC - Add a Buffer to CRC Writer

 60ms 60ms 437:func (r *teeReader) ReadByte() (b byte, err error) {
130ms 540ms 438: b, err = r.reader.ReadByte()
 . . 439: if err == nil {
 80ms 270ms 440: return b, r.bufWriter.WriteByte(b)
 . . 441: }
 . . 442:
 30ms 30ms 443: return
 . . 444:}

Preallocate Slices

Slice grow is expensive

● Allocates double the capacity of the old slice
● Copies the old slice data to the new one
● Adds pressure to the GC as it has to free the old slice data
● This is especially problematic for a big amount of slices or big ones
● Of you know the size or can estimate beforehand use it to set the capacity

Preallocate Slices

Code example

targetSz, delta := decodeLEB128(delta)
var dest []byte

for {
 [...]
 dest = append(dest, src[o:o+sz]...)

targetSz, delta := decodeLEB128(delta)
dest := make([]byte, 0, targetSz)

for {
 [...]
 dest = append(dest, src[o:o+sz]...)

Preallocate Slices

Performance first version (0.96 s)

Preallocate Slices

Performance second version (0.50 s)

Inspecting Syscalls

Inspecting Syscalls

Understand what is doing with the system

● Your programs interact with the rest of the system
● Sometimes the bottleneck is not the software but the systems it’s trying to use
● Other times is a bad use of these systems
● Calling the system has a price, it needs to switch context to kernel mode and back
● strace or dtrace can be useful to show what’s it doing

$ strace -o strace.log -f my_software

● -o: sends the output to a file
● -f: follow threads

Inspecting Syscalls

Example of output

9220 openat(AT_FDCWD,
"test_repo/.git/modules/doc/scipy-sphinx-theme/objects/pack/pack-4a8c3dfb6e1
8cfab78c8602e0d60cb4734486416.pack", O_RDONLY|O_CLOEXEC) = 5
9220 lseek(5, 0, SEEK_SET) = 0
9220 lseek(5, 0, SEEK_CUR) = 0
9220 lseek(5, 2127, SEEK_SET) = 2127
9220 lseek(5, 0, SEEK_CUR) = 2127
9220 read(5,
"\227\32x\234\225P\273N\4!\24\355\347+ng\341j\200\5\2261\306\250\235&\32\243
\306\376\2\27"..., 4096) = 4096
9220 lseek(5, 0, SEEK_CUR) = 6223
9220 lseek(5, 0, SEEK_SET) = 0
9220 close(5)

Inspecting Syscalls

Find bad uses of SEEK_CUR

$ grep -E '(open|read|seek)' strace.log
[...]
11209 lseek(6, 0, SEEK_CUR) = 224543
11209 lseek(6, 0, SEEK_CUR) = 224543
11209 lseek(6, 0, SEEK_CUR) = 224543
11209 lseek(6, 0, SEEK_CUR) = 224543
11209 lseek(6, 0, SEEK_CUR) = 224543
11209 lseek(6, 0, SEEK_CUR) = 224543
11209 lseek(6, 0, SEEK_CUR) = 224543
11209 lseek(6, 0, SEEK_CUR) = 224543
11209 read(6, "\327\261\360"..., 4096) = 4096
11209 lseek(6, 0, SEEK_CUR) = 228639
11209 lseek(6, 0, SEEK_CUR) = 228639
11209 lseek(6, 0, SEEK_CUR) = 228639
11209 lseek(6, 0, SEEK_CUR) = 228639

Inspecting Syscalls

Find seek direction and jump size

$ grep SEEK_SET master.strace | grep -v -E '(= 0$|unfinished)' | awk 'BEGIN
{pos=0} {new=$6;print pos-new;pos=new}'
[...]
-19608
19843
-19843
19843
-423
188
-319
-19289
19843
-19843
19843

Conclusions

● Biggest improvements are done changing the algorithm
● The profiler is your friend, learn to use it
● Check if you’re doing the same thing multiple times, this happens very often
● Try not to do one byte writes, use buffers is you really need to do it
● Preallocate slices when possible
● Your software does not work alone, check the use of the rest of the system
● When in doubt check library implementations

Thanks!

